Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Laura Andrau and Jonathan White*

School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia

Correspondence e-mail: whitejm@unimelb.edu.au

Key indicators

Single-crystal X-ray study T = 130 K Mean σ (C–C) = 0.002 Å R factor = 0.041 wR factor = 0.097 Data-to-parameter ratio = 11.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. N-Methyl-4-piperidyl p-nitrobenzoate at 130 K

The crystal structure of the title compound, $C_{13}H_{16}N_2O_4$, (1), reveals that the molecule exists in the solid state in the equatorial conformation. Thus, the through-bond interaction present in the axial conformation is not strong enough to overcome the *syn*-diaxial interactions between the axial methyl substituent and the axial H atoms on each of the ring C atoms β to N. The C-O_{PNB} (PNB is *p*-nitrobenzoate) bond distance is 1.4630 (16) Å, which is not significantly different from the corresponding C-O_{PNB} distance in 4-*tert*-butyl-cyclohexyl 4-nitrobenzoate. The structure of (1) was determined at 130 K.

Comment

As part of our studies on the factors influencing C–OR (R = hydroxy, ester or ether) bond distances (White & Robertson, 1992; Green *et al.*, 2000; Pool *et al.*, 2000), we have determined the structure of *N*-methyl-4-piperidyl *p*-nitrobenzoate, (1). Compound (1) can conceivably exist in solution in two conformations; (1ax) and (1eq) (Fig. 1), which interconvert by nitrogen inversion. Although conformation (1eq) is expected to be favoured on steric grounds, the axial conformation (1ax) is stabilized by a through-bond interaction between the nitrogen lone-pair electrons and the low-lying C–O_{PNB} (PNB is *p*-nitrobenzoate) antibonding orbital.

Thus, the purpose of this investigation was twofold: firstly to establish whether (1) exists as (1ax) or (1eq) in the solid state, and secondly, if the axial conformation was observed, to determine the effects of the through-bond interaction (Grob, 1969) on the C $-O_{PNB}$ distance compared with the parent compound, 4-*tert*-butyl 4-nitrobenzoate, (4). The crystal structure of (1) (Fig. 2) reveals that the ester exists in the solid state in the equatorial conformation (1eq), suggesting that either the through-bond interaction (1ax) is

not sufficiently stabilizing to overcome the repulsive syndiaxial interactions, or that more favourable packing forces exist for the equatorial conformer (1eq). The C $-O_{PNB}$ bond distance in (1) of 1.4630 (16) Å is not significantly different from the C $-O_{PNB}$ distance observed in compound (4), whose two independent molecules have C $-O_{PNB}$ distances of 1.464 (2) and 1.468 (2) Å (White & Robertson, 1993). Received 18 November 2002 Accepted 3 December 2002 Online 24 December 2002

 \bigcirc 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The conformations of (1) and the through-bond interaction present in (1ax).

Figure 2

Displacement ellipsoid plot of (1), with ellipsoids at the 20% probability level. H atoms have been omitted.

Figure 3

The π - π stacking between the 4-nitrobenzoate moieties along the *b* axis.

79 The packing of (1) in

the crystal is characterized by $\pi - \pi$ stacking between the 4nitrobenzoate moities along the b axis (Fig. 3). The planes of the aromatic rings are essentially parallel, with a separation of 3.535 (3) Å. The aromatic rings of one moiety are displaced relative to each other along the C8–C11 vector by ca 1.2 Å.

Experimental

The title compound, (1), was prepared in two steps from 4-piperidone, (2), as outlined in the Scheme. Thus, 4-piperidone was reduced to 4-piperidol, (3), using sodium borohydride in ethanol. The secondary alcohol, (3), was converted into the 4-nitrobenzoate ester, (1), by stirring with 4-nitrobenzoyl chloride in pyridine followed by aqueous work-up. Plate-like crystals of (1) were grown by slow evaporation of a pentane solution.

Crystal data

Z = 2
$D_x = 1.321 \text{ Mg m}^{-3}$
Mo $K\alpha$ radiation
Cell parameters from 1094
reflections
$\theta = 2.7 - 27.5^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 130.0 (2) K
Plate, colourless
$0.50 \times 0.30 \times 0.07 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	$R_{\rm int} = 0.032$
diffractometer	$\theta_{\rm max} = 27.5^{\circ}$
φ and ω scans	$h = -8 \rightarrow 4$
3614 measured reflections	$k = -9 \rightarrow 8$
2787 independent reflections	$l=-17 \rightarrow$
1915 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	All H-atom parameters refined
$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2 (F_o^2) + (0.0462P)^2]$
$wR(F^2) = 0.097$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.88	$(\Delta/\sigma)_{\rm max} < 0.001$
2787 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
236 parameters	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

4

8

16

Table 1

Selected geometric parameters (Å, °).

C1-O1	1.4630 (16)	C7-C8	1.496 (2)
C1-C2	1.5111 (18)	C8-C13	1.391 (2)
C1-C5	1.510(2)	C8-C9	1.3969 (19)
C2-C3	1.518 (2)	C9-C10	1.378 (2)
C3-N1	1.4603 (18)	C10-C11	1.381 (2)
C4-N1	1.4616 (17)	C11-C12	1.3837 (19)
C4-C5	1.525 (2)	C11-N2	1.4761 (18)
C6-N1	1.4540 (19)	C12-C13	1.380 (2)
C7-O2	1.2101 (16)	N2-O4	1.2233 (15)
C7-O1	1.3345 (15)	N2-O3	1.2247 (15)
O1-C1-C2	105.68 (10)	C9-C10-C11	118.84 (14)
O1-C1-C5	111.02 (11)	C10-C11-C12	122.43 (14)
C2-C1-C5	110.75 (13)	C10-C11-N2	118.55 (13)
C1-C2-C3	110.17 (12)	C12-C11-N2	119.02 (12)
N1-C3-C2	111.64 (12)	C13-C12-C11	118.23 (13)
N1-C4-C5	110.73 (11)	C12-C13-C8	120.70 (14)
C1-C5-C4	109.53 (12)	C6-N1-C3	110.08 (12)
O2-C7-O1	124.42 (13)	C6-N1-C4	111.18 (12)
O2-C7-C8	124.05 (13)	C3-N1-C4	109.89 (12)
O1-C7-C8	111.52 (11)	O4-N2-O3	123.51 (13)
C13-C8-C9	119.70 (14)	O4-N2-C11	118.41 (12)
C13-C8-C7	118.99 (12)	O3-N2-C11	118.08 (12)
C9-C8-C7	121.28 (12)	C7-O1-C1	118.26 (10)
C10-C9-C8	120.10 (14)		
O1-C1-C2-C3	-174.20 (12)	N1-C4-C5-C1	-58.72 (17)
C5-C1-C2-C3	-53.88 (17)	C2-C3-N1-C6	177.42 (13)
C1-C2-C3-N1	56.30 (17)	C2-C3-N1-C4	-59.80 (15)
O1-C1-C5-C4	172.16 (11)	C5-C4-N1-C6	-176.98 (13)
C2-C1-C5-C4	55.07 (16)	C5-C4-N1-C3	60.89 (16)

All H atoms were located in a difference map and their positional and isotropic displacement parameters were refined.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from The University of Melbourne.

References

- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2000). SMART. Version 5.55. Bruker AXS Inc., Madison, Wisconsin, USA.

Green, A. J., Giordano, J. & White, J. M. (2000). Aust. J. Chem. 53, 285–292.
Grob, C. A. (1969). Angew. Chem. Int. Ed. Engl. 8, 535–546.

Pool, B. R., White, J. M. & Wolynec, P. (2000). J. Org. Chem. pp. 7505–7601. White, J. M. & Robertson, G. B. (1992). J. Org. Chem. **57**, 4638–4644. White, J. M. & Robertson, G. B. (1993). Acta Cryst. C**49**, 347–350.